Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Sci Rep ; 11(1): 12410, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1268005

RESUMEN

In situ generation of antibacterial and antiviral agents by harnessing the catalytic activity of enzymes on surfaces provides an effective eco-friendly approach for disinfection. The perhydrolase (AcT) from Mycobacterium smegmatis catalyzes the perhydrolysis of acetate esters to generate the potent disinfectant, peracetic acid (PAA). In the presence of AcT and its two substrates, propylene glycol diacetate and H2O2, sufficient and continuous PAA is generated over an extended time to kill a wide range of bacteria with the enzyme dissolved in aqueous buffer. For extended self-disinfection, however, active and stable AcT bound onto or incorporated into a surface coating is necessary. In the current study, an active, stable and reusable AcT-based coating was developed by incorporating AcT into a polydopamine (PDA) matrix in a single step, thereby forming a biocatalytic composite onto a variety of surfaces. The resulting AcT-PDA composite coatings on glass, metal and epoxy surfaces yielded up to 7-log reduction of Gram-positive and Gram-negative bacteria when in contact with the biocatalytic coating. This composite coating also possessed potent antiviral activity, and dramatically reduced the infectivity of a SARS-CoV-2 pseudovirus within minutes. The single-step approach enables rapid and facile fabrication of enzyme-based disinfectant composite coatings with high activity and stability, which enables reuse following surface washing. As a result, this enzyme-polymer composite technique may serve as a general strategy for preparing antibacterial and antiviral surfaces for applications in health care and common infrastructure safety, such as in schools, the workplace, transportation, etc.


Asunto(s)
Antibacterianos/química , Antivirales/química , Proteínas Bacterianas/química , Hidrolasas/química , Indoles/química , Polímeros/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Antivirales/metabolismo , Antivirales/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , COVID-19/patología , COVID-19/virología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/metabolismo , Materiales Biocompatibles Revestidos/farmacología , Estabilidad de Medicamentos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Hidrolasas/genética , Hidrolasas/metabolismo , Cinética , Mycobacterium smegmatis/enzimología , Ácido Peracético/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , SARS-CoV-2/efectos de los fármacos
2.
Biointerphases ; 16(1): 011006, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: covidwho-1066780

RESUMEN

The novel coronavirus caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reached more than 160 countries and has been declared a pandemic. SARS-CoV-2 infects host cells by binding to the angiotensin-converting enzyme 2 (ACE-2) surface receptor via the spike (S) receptor-binding protein (RBD) on the virus envelope. Global data on a similar infectious disease spread by SARS-CoV-1 in 2002 indicated improved stability of the virus at lower temperatures facilitating its high transmission in the community during colder months (December-February). Seasonal viral transmissions are strongly modulated by temperatures, which can impact viral trafficking into host cells; however, an experimental study of temperature-dependent activity of SARS-CoV-2 is still lacking. We mimicked SARS-CoV-2 with polymer beads coated with the SARS-CoV-2 S protein to study the effect of seasonal temperatures on the binding of virus-mimicking nanospheres to lung epithelia. The presence of the S protein RBD on nanosphere surfaces led to binding by Calu-3 airway epithelial cells via the ACE-2 receptor. Calu-3 and control fibroblast cells with S-RBD-coated nanospheres were incubated at 33 and 37 °C to mimic temperature fluctuations in the host respiratory tract, and we found no temperature dependence in contrast to nonspecific binding of bovine serum ablumin-coated nanospheres. Moreover, the ambient temperature changes from 4 to 40 °C had no effect on S-RBD-ACE-2 ligand-receptor binding and minimal effect on the S-RBD protein structure (up to 40 °C), though protein denaturing occurred at 51 °C. Our results suggest that ambient temperatures from 4 to 40 °C have little effect on the SARS-CoV-2-ACE-2 interaction in agreement with the infection data currently reported.


Asunto(s)
COVID-19/metabolismo , Materiales Biocompatibles Revestidos , Células Epiteliales/metabolismo , Pulmón/metabolismo , Nanosferas , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Temperatura , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Línea Celular Tumoral , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/metabolismo , Células Epiteliales/patología , Células Epiteliales/virología , Humanos , Pulmón/patología , Pulmón/virología , Ratones , Células 3T3 NIH , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA